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Abstract

This project presents the development and analysis of a brain tumor classification system
from magnetic resonance imaging (MRI) using transfer learning techniques with Teachable
Machine. A model was trained to distinguish among four categories (glioma, meningioma,
pituitary, and no tumor), and its performance was evaluated using an independent test
set. The study focuses on analyzing hyperparameters such as learning rate, batch size, and
number of epochs, showing how these variables affect gradient stability. Finally, the visual
biases detected in the images are discussed, and a functional web application is presented that
enables real-time inference, highlighting the importance of human oversight in automated
medical diagnosis.
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1 Problem/Idea Definition and Justification

Automatic medical image classification is a field of great interest due to its potential to support
clinical decision-making, speed up triage, and reduce workload. This project proposes a simpli-
fied academic scenario: training a model capable of identifying visual patterns associated with
different types of brain tumors and with cases without tumors. The source code is available in
a public repository1 and includes a functional web application for running inferences2

1.1 Project Objective

The main objective is to train an image classification model using Teachable Machine, and
then integrate it into a small application that allows:

• Uploading a static medical image.

• Obtaining a class prediction with probabilities.

• Applying a confidence threshold θ to detect uncertain predictions.

1.2 Motivation

1. Realistic application: tumor classification is a real task present in many research works.

2. Transfer learning: it allows leveraging pretrained models even with limited datasets.

3. Critical analysis: the medical domain is especially sensitive to errors, making it ideal to
discuss limitations and biases.

1Project repository: https://github.com/diegoMalagrida/mri-tumor-classifier.
2Project web application: https://diegomalagrida.me/mri-tumor-classifier/app/.

2

https://github.com/diegoMalagrida/mri-tumor-classifier
https://diegomalagrida.me/mri-tumor-classifier/app/


2 Dataset Origin

The dataset used3 comes from a public online source and contains brain medical images classified
into four categories:

• Glioma

• Meningioma

• Pituitary

• No tumor

In addition, Figure 1 shows a representative sample of images from the dataset, where vari-
ability in slice selection, orientation, and contrast across patients can be observed.

Figure 1: Dataset sample.

To facilitate training and evaluation without losing representativeness, we worked with a
balanced subset of the dataset. Specifically, 500 images per class were randomly selected from
the training set. In addition, an independent test set of 100 images per class was defined
from the original testing split.

2.1 Subset Selection Criterion

Selection was performed using stratified random sampling, ensuring:

• Randomness: any manual selection was avoided to reduce bias.

• Class balance: all categories maintain the same number of examples.
3https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
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2.2 Image Size Normalization

In order to maintain a homogeneous input format for the model, a standard resolution of
512×512 was set, since it was the most frequent in the dataset.

However, it was observed that the No tumor class did not contain enough images at that
resolution. To address this, the 500 largest available images were selected and a uniform
rescaling to 512×512 was applied using a Python script.

This normalization helps reduce format-related variability and prevents resolution from acting
as a discriminative factor unrelated to medical content.
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3 Model Training

3.1 Base Model and Transfer Learning

Teachable Machine uses a pretrained model as a feature extractor. Through transfer learning,
the model learns a final classifier adapted to the 4 defined classes.

To facilitate training and evaluation without losing representativeness, we worked with a
balanced subset of the dataset. Specifically, 500 images per class were randomly selected
from the training set, since preliminary tests with larger subsets significantly increased loading
and training time. This is because Teachable Machine is mainly intended for quick experiments
and moderately sized datasets, so 500 images per class was an appropriate compromise between
representativeness and computational feasibility. In addition, an independent test set of 100
images per class was defined from the original testing split.

Figure 2 shows the interface used, including the four classes and the advanced training con-
figuration.

Figure 2: Teachable Machine interface showing class loading and training configuration using
transfer learning.

5



4 Model Training and Main Configuration

4.1 Configuration Used

For training the final model, transfer learning was applied on a base architecture predefined
by Teachable Machine. After a fine-tuning process, the following hyperparameters were selected
as they offered the best trade-off between stability and accuracy:

• Epochs: 35

• Batch size: 32

• Learning rate: 0.0005

To reduce low-confidence incorrect predictions, a thresholding system was implemented:

ŷ =

{
argmaxk p(y = k | x) if maxk p(y = k | x) > θ

Unknown/uncertain class otherwise

In the final implementation, a default value of θ = 0.80 was used (adjustable in the interface).

4.2 Training Results and Metrics

During training, learning progress was monitored through accuracy and loss curves. As shown in
the following figures, the model reaches convergence around epoch 25, where the error stabilizes.

(a) Accuracy per epoch. (b) Loss per epoch.

Figure 3: Training evolution.

Likewise, performance for each category was evaluated through class-specific accuracy and
the confusion matrix, which helped identify which classes exhibit more similar morphologies for
the classifier.
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(a) Accuracy per class. (b) Confusion matrix.

Figure 4: Detailed metrics for the main configuration.

4.3 Confusion Matrix

Figure 5 shows the model confusion matrix on the test set. In general, the dominant diagonal
reflects a good number of correct predictions, especially for the notumor (96/100) and pituitary
(96/100) classes.

The most frequent errors occur between glioma and meningioma, indicating that the model
tends to confuse both tumor subtypes (14 glioma cases predicted as meningioma and 2 in the
opposite direction).

However, in a clinical setting the most relevant error is not confusing the type of tumor,
but failing to detect its presence. In that sense, the most critical failure corresponds to
predicting notumor when the image belongs to a tumor class (false negative). This pattern is
observed mainly in meningioma → notumor (16 cases), suggesting that some meningiomas have
less evident features or are more similar to images without tumors.

Figure 5: Model confusion matrix on the test set.

4.4 Classification Report

Figure 6 summarizes model performance using precision, recall, and F1-score for each class.
Overall, the model achieves 87% accuracy. The best-performing classes are notumor and

pituitary (F1-score ≈ 0.90), showing consistent behavior in both precision and sensitivity. In con-
trast, meningioma has the lowest performance (F1-score 0.75), suggesting greater visual overlap
with other categories and aligning with what is observed in the confusion matrix.

7



Finally, since the test set is balanced (support=100 per class), the macro and weighted aver-
ages are very similar, reflecting overall performance without class imbalance bias.

Figure 6: Classification report of the model on the test set.

4.5 Comparison: Internal vs. External Evaluation

When comparing results, it can be seen that Teachable Machine’s internal evaluation provides
extremely optimistic metrics, reaching accuracies of up to 99% in some classes (Figure 4b). This
discrepancy occurs because its internal validation uses a subset of images that share the same
style, resolution (512×512), and acquisition conditions as the training data.

In contrast, external validation on the independent test set reduces overall accuracy to 87%
(Figure 6). In this scenario, the model faces images with greater variability in format and
sharpness that it has never seen before. This performance gap confirms slight overfitting to
the visual style of the training dataset and demonstrates that, in a real medical environment,
generalization capability is lower than what rapid training tools may suggest.
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5 Experimentation with Other Hyperparameters

To better understand the learning dynamics of the model, tests were performed by modifying
optimization parameters. These tests make it possible to observe how the network reacts to
extreme configurations.

5.1 Case 1: High Learning Rate

Epochs: 35 | Batch size: 32 | Learning Rate: 0.01

When using an excessively high learning rate, the optimizer takes steps that are too large,
preventing the model from settling into a minimum of the loss function. This is reflected in the
loss-per-epoch graph, which shows abrupt oscillations and instability spikes. Although training
accuracy may appear to scale quickly, the divergence between training and validation curves
suggests that the model is not extracting useful features, but rather bouncing erratically between
possible solutions.

(a) Accuracy per epoch. (b) Loss per epoch.

(c) Accuracy per class. (d) Confusion matrix (Training).

Figure 7: Training results for Case 1.
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Despite the instability observed during training, the model reaches an overall accuracy of 86%
on the independent test set, slightly outperforming the other test cases. However, the confusion
matrix reveals a critical vulnerability in identifying meningioma, where 21 cases are incorrectly
classified as healthy brains (notumor). This level of false negatives is especially dangerous in a
clinical context, as it implies missing an existing diagnosis. Although the F1-score for classes
such as pituitary is high (0.93), the lack of consistency derived from an aggressive learning rate
makes the model unreliable for safe medical deployment.

Figure 8: External validation for Case 1.

5.2 Case 2: Excessively Large Batch Size

Epochs: 35 | Batch size: 512 | Learning Rate: 0.0005

When using the maximum batch size, the model performs very few weight updates per
epoch, resulting in an extremely stable but slow learning process. The training graphs show
a very flat and smoothed learning curve, without the typical oscillations of smaller batches.
This behavior tends to over-average visual characteristics, which leads to increased difficulty
in distinguishing between classes with similar morphologies, as seen in the confusions between
glioma and meningioma in the results matrix.
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(a) Accuracy per epoch. (b) Loss per epoch.

(c) Accuracy per class. (d) Confusion matrix (Training).

Figure 9: Training results for Case 2.

External validation yields an overall accuracy of 84%, slightly higher than the low-epoch case
but still below the optimal model. When analyzing the confusion matrix, it is observed that
the model remains highly reliable at identifying healthy brains (notumor), but shows significant
difficulties in the differential classification of tumors. Notably, meningioma is repeatedly confused
with pituitary (19 cases) and glioma (6 cases), resulting in an F1-score of only 0.70 for this
category. This confirms that an excessively large batch size prevents the optimizer from adjusting
weights with the precision required to separate morphologically similar classes.
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Figure 10: External validation for Case 2.

5.3 Case 3: Insufficient Training

Epochs: 2 | Batch size: 32 | Learning Rate: 0.0005

In this scenario, the number of epochs was drastically limited to simulate an underfitting
or under-training state. The evolution graphs show linear trajectories that do not stabilize,
indicating that the model has not had enough iterations to adjust the weights of the final transfer
learning layer. Although accuracy on the "notumor" class remains high, the system shows
low and random reliability when distinguishing among different types of brain tumors due to
insufficient training.
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(a) Accuracy per epoch. (b) Loss per epoch.

(c) Accuracy per class. (d) Confusion matrix (Training).

Figure 11: Training results for Case 3.

Despite the brief training, the model reaches an overall accuracy of 82% on the independent
test set. This seemingly high value is mainly explained by the robustness of the base model used
in transfer learning. However, analysis of the confusion matrix reveals critical deficiencies in
diagnostic reliability, especially in distinguishing between glioma and meningioma. The network
shows a high volume of false negatives in the meningioma class, where a significant portion of
samples are incorrectly classified as pituitary. These results demonstrate that, even if accuracy
appears acceptable, two epochs are insufficient for the model to learn the subtle morphological
features needed to safely differentiate tumor types, compromising its usefulness in a real clinical
environment.
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Figure 12: External validation for Case 3.
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6 Discussion of Biases and Errors

This section critically analyzes the model limitations, based on the discrepancy between the
obtained metrics and the visual morphology of the processed medical images.

6.1 Visual Differences and Model Behavior

To understand systematic errors, it is necessary to analyze how the model interprets the visual
and anatomical features of each class:

• Pituitary (Pituitaria): It shows the most stable behavior with an F1-score of 0.91. These
tumors are always located in an anatomically invariant area (base of the brain), which makes
detection easier.

• Glioma: It is characterized by being diffuse and altering the internal symmetry of the tissue.
Its variability explains confusions with meningioma (14 cases).

• Meningioma: It appears as a compact, well-delimited mass that grows from the outer mem-
branes inward. Despite its clarity, it is the class with the highest error rate.

Figure 13: Visual differences among tumors.

6.2 Framing Bias and the Superior View Perspective

It is paradoxical that Meningioma, often presenting large protrusions, is the class with the
most false negatives (16 cases classified as Notumor). After a visual analysis of the dataset, a
critical bias was detected:

• Prevalence of the superior plane: The vast majority of images in the Notumor class are
taken from a horizontal or superior plane where the scan occupies most of the frame.
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• Spurious correlation: By chance, meningioma cases that the model incorrectly labels as
healthy follow the same visual pattern: top-down views where the brain fills almost the entire
frame.

• Cranial mimicry: From this perspective, a bump attached to the brain edge is visually
confused with the natural curvature or thickness of the skull. The model prioritizes image
composition (superior plane + high zoom) over the presence of the tumor mass, assuming that
structure belongs to the normal anatomy of a healthy patient.

6.3 Failure Case Analysis (Qualitative Example)

To illustrate this limitation, a case is presented where image composition induces error. Figure 14
shows the MRI used as input; Figure 15 presents the classification summary; and Figure 16 shows
the probability distribution.

Figure 14: Critical failure example: input image with a top-down framing and high zoom.

Figure 15: Case classification summary: the model predicts Notumor with high confidence.
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Figure 16: Case probability distribution: Notumor strongly dominates over tumor classes.

Failure analysis: In this example, the model ignores a visible anomaly and classifies the
case as Notumor. The main reason is that the image shares the same predominant visual style as
the healthy class (superior perspective and tight framing), inducing a spurious correlation and
generating incorrect confidence in the system (Figures 15 and 16).
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7 Integration into Web Application/Script

The model was exported in TensorFlow.js format and integrated into a web application devel-
oped with HTML, CSS, and JavaScript, which allows:

• Loading static images.

• Running inference in the browser.

• Showing class probabilities.

• Applying threshold θ to indicate “uncertainty”.

7.1 Interface Design

The web application was designed with a clear and modular interface aimed at facilitating result
interpretation, prioritizing simple navigation and immediate readability of predictions.

As shown in Figure 17, the layout is organized into two main columns. On the left side,
interaction elements are grouped: (i) confidence threshold θ configuration via a slider, (ii) a
dataset image library filterable by category, and (iii) an image upload module. On the right
side, model results are presented: a classification summary (predicted class and confidence) and
a probability distribution as horizontal bars, enabling an intuitive comparison of each class’s
relative strength. In terms of look & feel, a minimalist card-based design was used, with readable
typography and whitespace separation to improve visual clarity.

Figure 17: Main view of the web application: threshold θ configuration, dataset library, and
prediction panel with probability distribution.

On the other hand, Figure 18 shows the output of the validation module integrated into the
application itself. This component allows running the model over the entire test set hosted in a
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json file and visualizing aggregated metrics, specifically the confusion matrix and the classification
report.

Figure 18: Model validation view in the web application and the module for uploading images
from your computer: execution on the test dataset and visualization of the confusion matrix and
classification report.
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8 Conclusions

After completing the tests, the main conclusion is that an artificial intelligence model is not
infallible just because it has high accuracy. Although our main model performs well with 87%
accuracy, experiments with different hyperparameters taught us that stability is key. We saw
that if the learning rate is too high, the model becomes unstable and stops being reliable, and if
we train too little or with batches that are too large, the network fails to learn the details that
distinguish one tumor from another.

The most interesting part of the project was discovering that the model can sometimes be
misled by things that have nothing to do with medicine. For example, we detected that if a scan
is taken from very high above or with a lot of zoom, the model tends to say there is no tumor
simply because that image resembles the visual style of healthy images it saw during training.
This shows that, in medicine, it is not enough to look at the final accuracy number; it is essential
to review the confusion matrix to understand where the system makes mistakes. In the end, the
web application we built serves precisely that purpose: to see in real time that human judgment
is still necessary to validate what a machine predicts.
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